
Supplementary Figure 1 | Heat capacity and entropy. (a) Heat capacity C(T ) as a function of the

temperature for the magnetic field µB = 0.1J . (b) Entropy difference −∆S as a function of the

magnetic field.
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Supplementary Figure 2 | Skyrmion probability and critical magnetic field. The critical mag-

netic field derived from MC simulations as a function of the temperature. The skyrmion probability

τSk/(τSk + τFM) is color coded in red to black.
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Supplementary Figure 3 | Temperature dependence of τ c. The mean lifetime τ c = τFM(Bc) =

τSk(Bc) as a function of the inverse temperature J/kBT obtained from MC simulations. A tem-

perature lower than 19K is needed to achieve mean lifetimes on the order of years in the system

Pd/Fe/Ir(111).



Supplementary Note 1 | Entropy

In the following, we comment on the entropy of the system which is being discussed in the main

text and draw a connection to the temperature dependence of the critical field Bc.

Ezawa1 estimated the entropy of an extended thin magnetic film exhibiting skyrmions and used it to

derive a phase diagram spanned by the temperature and the magnetic field. Particularly, the critical

magnetic field separating the skyrmionic and ferromagnetic phases was found to increase with the

temperature due to a higher entropy of the skyrmion phase. We observed a similar behavior for the

critical field Bc as shown in Supplementary Figure 2.

Ezawa1 treats the entropy of the extended system adapting at maximum N skyrmions by using the

formula for n subset-element combinations N !/n!(N − n)!. Hence, skyrmions here are treated as

an ensemble of quasiparticles. In our investigation, a single skyrmion is an extended object with

internal degrees of freedom. Therefore, another approach for the estimation of the entropy for the

system discussed in the main text is needed.

We determine the entropy from thermodynamic principles from the heat capacity C as Ramirez et

al.2. The heat capacity is calculated in the Monte-Carlo simulation by

C =
< E2 > − < E >2

kBT 2

as a function of the temperature for various magnetic fields. For a given magnetic field, the tem-



perature was reduced from kBT = 6 J (paramagnetic disordered state) to kBT = 0.01 J (ordered

equilibrium state) in 1000 steps and 2 · 104 Monte-Carlo steps were done at each temperature step.

Supplementary Figure 1a shows the heat capacity as a function of the temperature exemplarily for

the magnetic field µB = 0.1 J .

The entropy S(T ) can then be determined by evaluating the following integral:

S(T ) =

∫ T ′=T

T ′=0

C(T ′)

T ′ dT ′.

In Monte-Carlo simulations we face the problem that the temperature is always a value greater

than zero and therefore, for kBT < 0.58 J the integral cannot be properly evaluated. However, we

have access to the entropy difference between a low temperature T0 and a high temperature T∞ at

which the sample is disordered.

∆S =

∫ T ′=T∞

T ′=T

C(T ′)

T ′ dT ′

The total magnetic entropy of N independent quantum spins is known to be S = R·ln(2J+1) with

J the total angular momentum. For classical spin systems this value corresponds to S = R·ln 4π as

stated by McMichael et al.3. Hence, the magnetic entropy per spin can reach a maximum of S/R =

ln 4π ≈ 2.48. In the limit of strong interactions this value might be strongly reduced. However, we

can take the limit of ln 4π as a total spin entropy at an infinite temperature. Hence, while we cannot



give the absolute values of entropy at finite temperatures, we can calculate ∆S = S(T∞) − S(T )

as a function of external magnetic field. Supplementary Figure 1b shows −∆S(kBT = 0.58 J,B)

in the broad range of magnetic fields for kBT = 0.58 J , which lies below the ordering temperature.

As one can see from this figure, ∆S(B) linearly increases with increasing field (−∆S(B) linearly

decreases). This means that the entropy of the ordered state S(T,B) decreases with increasing field

as the total entropy is S(T,B) = S(T∞) − ∆S. In other words, the skyrmionic state (B < Bc)

possesses a larger entropy than the ferromagnetic state.

Since the influence of the entropy becomes more prominent for higher temperatures, the stability

of a skyrmion increases at a given magnetic field with the temperature and hence, Bc(T ) should

also increase with the temperature. We estimate the entropic contribution due to the formation of

a single skyrmion to be on the order of 0.7meV/K which is the entropy difference between the

magnetic fields B = 1.1Bc and B = 0.9Bc.

This result about the entropy difference is in good agreement with considerations using the Eyring

equation 4, 5

ν = ν0 exp(
∆S

kB
) exp(−∆U

kBT
) (1)

describing the transition rate ν by a prefactor ν0 and the entropy and internal energy differences

∆S and ∆U going from the initial to the transition state. Applying the Eyring equation to the

skyrmionic system, one obtains the attempt frequencies νSk and νSk of the Sk and FM states as



νSk = ν0 exp(∆SSk/kB) exp(−
∆USk

kBT
) (2)

νFM = ν0 exp(∆SFM/kB) exp(−
∆UFM

kBT
) (3)

At Bc, the transition rates are equal (νSk = νFM) and therefore

∆USk −∆UFM = T (∆SSk −∆SFM) (4)

which is equivalent to the statement that the Gibbs energies of the FM and Sk states are identical.

The differences ∆USk − ∆UFM and ∆SSk − ∆SFM are equal to the differences of the internal

energies and entropies of the two states. The energy difference has been found to be ≈ 6 J at Bc

from Figure 2b of the main text. This leads to an entropy difference of ≈ 0.9meV/K between the

FM and Sk states with (SSk > SFM) at the temperature kBT/J = 0.58. This temperature was also

investigated in the main text. The entropy difference is close to the one stated above of 0.7meV/K.

Moreover, we can show a direct link between the dependence of the critical magnetic field as a

function of the temperature (Bc(T )) and the entropy difference between the Sk and FM states.

From equation 4 follows

EFM(Bc, T )− ESk(Bc, T ) = T (SFM(Bc, T )− SSk(Bc, T )) (5)



with EFM, ESk and SFM, SSk the energies and entropies of the FM and Sk states. The difference

of the activation energies is equal to the difference of the energies of the FM and Sk states because

the transition state is the same for both directions as shown in the main manuscript for the present

system.

Differentiating with respect to the temperature while assuming that the entropy difference is in a

first approximation independent of the temperature (∆S(Bc, T ) = SFM(Bc, T ) − SSk(Bc, T )) =

∆S(Bc) yields

∂

∂T
(EFM − ESk) = ∆S(Bc) (6)

It is reasonable to assume that the equilibrium size of a skyrmion at the critical field is approxi-

mately independent of the temperature. Therefore, the change of difference of the energy levels

with the temperature is dominated by the Zeeman energy and hence

∂

∂T
(EFM − ESk) ≈

∂

∂T
∆EZ(Bc) ≈ ∆Mz

∂

∂T
Bc (7)

The difference of the z-component of the magnetisation between the two states can be derived from

the MC simulations as ∆M z ≈ 120µ. The slope of the change of the critical field with respect to

the temperature can be taken from Supplementary Figure 2 and one obtains



|∆M z
∂

∂T
Bc| ≈ 0.7meV/K (8)

Thus, different ways lead to similar values within the range of (0.7 − 0.9)meV/K as the entropy

difference between the Sk and FM states. Hence, we conclude that the skyrmion stability is mainly

defined via the entropic contribution.

Supplementary Note 2 | Damping regime

The interpretation concerning the shape of the potential wells of the skyrmionic and ferromagnetic

states are motivated by the formula for the escape rate r for a system with a viscosity η and an

energy barrier ∆ in the regime of a high damping6

r =
ωω′

η
exp(−∆/kBT ) (9)

Therein, ω and ω′ approximate by harmonic potentials the energy landscape around the energy

minimum and the barrier respectively. So, if the barrier height and shape ω′ is identical on the

ways back and forth which is a reasonable assumption because the identity of the barrier height

has been shown, the difference in total frequency ω · ω′/η can only be explained by the shape of

the energy minima. To be able to apply the Kramers’ theorem one has to satisfy two conditions (i)

the energy barrier has to be significantly higher than the thermal energy and (ii) the system has to



be in the regime of intermediate to high damping. The energy barriers for the skyrmionic system

presented in the manuscript have a height of about (5−10) J which is by about a factor of ten larger

than the thermal energy of kBT ≈ 0.6 J . Hence, the condition (i) is satisfied. The determination

of the correct damping regime (ii) is more subtle. There are strong arguments indicating that we

are working in the regime of high damping. It has been shown for an ensemble of single domain

particles that the results of the Landau-Lifshitz-Gilbert equation and a classical heat-bath Monte-

Carlo scheme coincide in the regime of high damping7. We believe that this provides a good

approximation to our MC simulations even though the skyrmionic system is more complex. In

other words, the regime of high damping is imposed by the simulation method.

Supplementary Note 3 | Predictions about stability bounds of skyrmions in Pd/Fe/Ir(111)

In the main text, we present a prediction for individual skyrmions in Pd/Fe/Ir(111) which states

that mean lifetimes larger than τSk = τFM = 1year are obtained for temperatures below 19K. In

the following, we comment on the method that was applied to obtain this prediction.

Using the results of the MC simulations, we investigated the dependence of the mean lifetime

τ c = τFM(Bc) = τSk(Bc) at the critical field Bc as a function of the inverse temperature J/kBT

finding an exponential dependence as shown in Supplementary Figure 3. The data points were

obtained from the field and temperature dependent mean lifetimes presented in the main text in

Figure 2a. Considering a constant magnetic field, the mean lifetimes τSk(T ) and τFM(T ) exhibit

an Arrhenius-like dependence on the temperature as discussed in the main text. The exponential



fit functions approximating the temperature dependent mean lifetimes τSk(T,B) and τFM(T,B)

at a specific field (B = const.) intersect in (Tc, τ c). This is shown exemplarily in the inset of

Supplementary Figure 3 for the magnetic field µB = 0.093 J . The point of intersection (Tc, τ c)

at which τSk = τFM = τ c is marked by a black circle and can be found again in the graph of

the main panel. The other data points in the main panel were found in the same way by the

intersections of τSk(T ) and τFM(T ) at other magnetic fields. This procedure is possible because

the point of intersection depends on the magnetic field, i.e. (Tc(B), τ c(B)). The numerical results

are quantified by the experimental data for Pd/Fe/Ir(111) as discussed in the main text providing

absolute energy and time scales for the MC simulation. With this correspondence, we can derive

that the skyrmionic and ferromagnetic states are stable on the order of years at the critical field Bc

for temperatures lower than 19K.
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